Day 09 - Logistic Regression

cmse &P

Oct. 6, 2020

Administrative

e Homework 3 will be assigned Friday 10/9 and due Friday 10/23
e Midterm will be given Thursday 10/29 in class

From Pre-Class Assignment

Useful Stuff

¢ Videos from Google were helpful to understand the scope of Machine Learning
e | have a better understanding of train/test split

Challenging bits

e | am still a little confused about why we split the data
e |amnotsure whatmake classificationisdoing
e What are redundant and informative features? How do we see them in the plots?

We will be doing classification tasks for a few weeks, so we will get lots of practice

Machine Learning

" Machine learning

1

/ Regression \
= Linear i

= Polynomial 5VD | ommmmm e .

= PCA £3) Continuous

~ Decision Tree l S ——— -
: * = K-means i
— * Random forest ' i

B

= KNN = Apriori oo ~,
Categorical }
= Trees = FP-Growth @_ & »

= |ogistic Regression

= Naive-Bayes

__

Classification

20 30 40 50 &0 70 80 90 100

0.2

-0.5 -0.4 03 0.2 0.1 0 0.1

Regression

Classification

Classification Algorithms

Logistic Regression: The most traditional technique; was developed and used prior
to ML; fits data to a "sigmoidal" (s-shaped) curve; fit coefficients are interpretable

K Nearest Neighbors (KNN): A more intuitive method; nearby points are part of the
same class; fits can have complex shapes

Support Vector Machines (SVM): Developed for linear separation (i.e., find the
optimal "line" to separate classes; can be extended to curved lines through different
"kernels"

Decision Trees: Uses binary (yes/no) questions about the features to fit classes; can
be used with numerical and categorical input

Random Forest: A collection of randomized decision trees; less prone to overfitting
than decision trees; can rank importance of features for prediction

Gradient Boosted Trees: An even more robust tree-based algorithm

We will learn Logisitic Regression, KNN, and SVM, but sklearn provides access to the
other three methods as well.

Generate some data

make classification letsus make fake dataand control the kind of data we get.

n features - the total number of features that can be used in the model
* n _informative -the total number of features that provide unique information for
classes
= say 2,50 Xxp and x;
n_redundant - the total number of features that are built from informative
features (i.e., have redundant information)
m say 1l,s0xp = coXxpg + €1 X
e n class -the number of class labels (default 2: 0/1)
n clusters per class -the number of clusters per class

In [63]: import matplotlib.pyplot as plt
plt.style.use('seaborn-colorblind')
from sklearn.datasets import make classification

features, class labels = make classification(n_samples = 1000,
n_features = 3,
n_informative =
n_redundant = 1,
n _clusters per class=1,
random_state=201)

2,

In [64]:

Out[64]:

Let's look at these 3D data
from mpl_ toolkits.mplot3d import Axes3D
plt.figure(figsize=(8,8))
Axes3D(fig, rect=][0,

fig
ax

Xs =

ys =

ZS

ax.scatter3D(xs, ys, zs, c=class labels, ec='k')
ax.set xlabel('feature 0')
ax.set _ylabel('feature 1)
ax.set zlabel('feature 2')

Text (0.5, 0, 'feature 2')

featuresy|:,
featuresj:,
features|:,

0]
1]
2]

elev=30,

azim=135)

Ly

feature 2

In [65]: | ## From a different angle, we see the 2D nature of the data
fig = plt.figure(figsize=(8,8))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=15, azim=90)

xs = features[:, 0]
ys = features[:, 1]
zs = features[:, 2]
ax.scatter3D(xs, ys, zs, c=class labels, ec = 'k'")

ax.set xlabel('feature 0')
ax.set _ylabel('feature 1')
ax.set zlabel('feature 2'")

out[65]: Text(0.5, 0, 'feature 2")

7 ainiesy

_2—

4
=il]
_2— -

Feature Subspaces

For higher dimensions, we have take 2D slices of the data (called "projections" or
"subspaces")

In [66]: f, axs = plt.subplots(l,3,figsize=(15,4))
plt.subplot(131)
plt.scatter(features[:, 0], features[:, 1], marker 'o', ¢ class labels, ec
lkl)
plt.xlabel('feature 0")
plt.ylabel('feature 1)

plt.subplot(132)

plt.scatter(features[:, 0], features[:, 2], marker 'o', ¢ class_ labels, ec
Ikl)

plt.xlabel('feature 0')

plt.ylabel('feature 2")

plt.subplot(133)

plt.scatter(features[:, 1], features[:, 2], marker 'o', c class labels, ec
lkl)

plt.xlabel('feature 1)

plt.ylabel('feature 2')

plt.tight layout()

feature 1
featurae 2
featura 2

-05 0.0 05 10 15 20 -05 0.0 0.5 10 15 20 -4
feature 0 feature 0 feature 1

What about Logistic Regression?

Logistic Regression attempts to fit a sigmoid (S-shaped) function to your data. This shapes
assumes that the probability of finding class O versus class 1 increases as the feature
changes value.

In [70]: £, axs = plt.subplots(l,3,figsize=(15,4))
plt.subplot(131)
plt.scatter(features[:,0], class labels, c=class labels, ec='k'")
plt.xlabel('feature 0')
plt.ylabel('class label')

plt.subplot(132)

plt.scatter(features[:,1], class labels, c=class labels, ec='k'")
plt.xlabel('feature 1")

plt.ylabel('class label')

plt.subplot(133)

plt.scatter(features[:,2], class labels, c=class labels, ec='k")
plt.xlabel('feature 2")

plt.ylabel('class label')

plt.tight layout()

10 - ca o83 caninoaisaiiel

=
(=]

10 - OO T RO LD O

08 -

=
[=:]

08 -

06 -

=
[=

06 -

class label
class label
class label

0.4 -

[=]
.

04 -
0.2- 02 - 0.2 -
B = Spa (el (SIS 5.0 SH 08§51 098118 S0 §3 (088 (S8 1e Tus e] oo OEEIIETR ORI TN (T L] SRS (8 S L 5:51 9) 8 £8:18 5.8 $1:8 ST8 M8 00 (BN anL Saieiunei

-05 0.0 05 10 15 20 -4 -3 -2 -1 0 1 2 3 4 -2 -1] 1 2 3 4
feature 0 feature 1 feature 2

Questions, Comments, Concerns?

