
Day 09 - Logistic RegressionDay 09 - Logistic Regression

Oct. 6, 2020Oct. 6, 2020

AdministrativeAdministrative
Homework 3 will be assigned Friday 10/9 and due Friday 10/23
Midterm will be given Thursday 10/29 in class

From Pre-Class AssignmentFrom Pre-Class Assignment

Useful Stu�Useful Stu�
Videos from Google were helpful to understand the scope of Machine Learning
I have a better understanding of train/test split

Challenging bitsChallenging bits
I am still a little confused about why we split the data
I am not sure what make_classification is doing

What are redundant and informative features? How do we see them in the plots?

We will be doing classi�cation tasks for a few weeks, so we will get lots of practice

Machine LearningMachine Learning

Classi�cationClassi�cation

Classi�cation AlgorithmsClassi�cation Algorithms
Logistic Regression: The most traditional technique; was developed and used prior
to ML; �ts data to a "sigmoidal" (s-shaped) curve; �t coef�cients are interpretable
K Nearest Neighbors (KNN): A more intuitive method; nearby points are part of the
same class; �ts can have complex shapes
Support Vector Machines (SVM): Developed for linear separation (i.e., �nd the
optimal "line" to separate classes; can be extended to curved lines through different
"kernels"
Decision Trees: Uses binary (yes/no) questions about the features to �t classes; can
be used with numerical and categorical input
Random Forest: A collection of randomized decision trees; less prone to over�tting
than decision trees; can rank importance of features for prediction
Gradient Boosted Trees: An even more robust tree-based algorithm

We will learn Logisitic Regression, KNN, and SVM, but sklearn provides access to the
other three methods as well.

Generate some dataGenerate some data
make_classification lets us make fake data and control the kind of data we get.

n_features - the total number of features that can be used in the model

n_informative - the total number of features that provide unique information for

classes
say 2, so and

n_redundant - the total number of features that are built from informative

features (i.e., have redundant information)
say 1, so

n_class - the number of class labels (default 2: 0/1)

n_clusters_per_class - the number of clusters per class

𝑥0 𝑥1

= +𝑥2 𝑐0𝑥0 𝑐1𝑥1

In [63]: import matplotlib.pyplot as plt
plt.style.use('seaborn-colorblind')
from sklearn.datasets import make_classification

features, class_labels = make_classification(n_samples = 1000,
 n_features = 3,
 n_informative = 2,
 n_redundant = 1,
 n_clusters_per_class=1,
 random_state=201)

In [64]: ## Let's look at these 3D data
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(8,8))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=30, azim=135)

xs = features[:, 0]
ys = features[:, 1]
zs = features[:, 2]

ax.scatter3D(xs, ys, zs, c=class_labels, ec='k')
ax.set_xlabel('feature 0')
ax.set_ylabel('feature 1')
ax.set_zlabel('feature 2')

Out[64]: Text(0.5, 0, 'feature 2')

In [65]: ## From a different angle, we see the 2D nature of the data
fig = plt.figure(figsize=(8,8))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=15, azim=90)

xs = features[:, 0]
ys = features[:, 1]
zs = features[:, 2]

ax.scatter3D(xs, ys, zs, c=class_labels, ec = 'k')
ax.set_xlabel('feature 0')
ax.set_ylabel('feature 1')
ax.set_zlabel('feature 2')

Out[65]: Text(0.5, 0, 'feature 2')

Feature SubspacesFeature Subspaces
For higher dimensions, we have take 2D slices of the data (called "projections" or
"subspaces")

In [66]: f, axs = plt.subplots(1,3,figsize=(15,4))
plt.subplot(131)
plt.scatter(features[:, 0], features[:, 1], marker = 'o', c = class_labels, ec =
'k')
plt.xlabel('feature 0')
plt.ylabel('feature 1')

plt.subplot(132)
plt.scatter(features[:, 0], features[:, 2], marker = 'o', c = class_labels, ec =
'k')
plt.xlabel('feature 0')
plt.ylabel('feature 2')

plt.subplot(133)
plt.scatter(features[:, 1], features[:, 2], marker = 'o', c = class_labels, ec =
'k')
plt.xlabel('feature 1')
plt.ylabel('feature 2')

plt.tight_layout()

What about Logistic Regression?What about Logistic Regression?
Logistic Regression attempts to �t a sigmoid (S-shaped) function to your data. This shapes
assumes that the probability of �nding class 0 versus class 1 increases as the feature
changes value.

In [70]: f, axs = plt.subplots(1,3,figsize=(15,4))
plt.subplot(131)
plt.scatter(features[:,0], class_labels, c=class_labels, ec='k')
plt.xlabel('feature 0')
plt.ylabel('class label')

plt.subplot(132)
plt.scatter(features[:,1], class_labels, c=class_labels, ec='k')
plt.xlabel('feature 1')
plt.ylabel('class label')

plt.subplot(133)
plt.scatter(features[:,2], class_labels, c=class_labels, ec='k')
plt.xlabel('feature 2')
plt.ylabel('class label')

plt.tight_layout()

Questions, Comments, Concerns?Questions, Comments, Concerns?

